Robust Portfolio Choice and Indifference
نویسندگان
چکیده
We solve, theoretically and numerically, the problems of optimal portfolio choice and indifference valuation in a general continuous-time setting. The setting features (i) ambiguity and ambiguity averse preferences, (ii) discontinuities in the asset price processes, with a general and possibly infinite activity jump part next to a continuous diffusion part, and (iii) general and possibly non-convex trading constraints. We characterize our solutions as solutions to Backward Stochastic Differential Equations (BSDEs). We prove existence and uniqueness of the solution to the general class of BSDEs with jumps having a drift (or driver) that grows at most quadratically, encompassing the solutions to our portfolio choice and valuation problems as special cases. We provide an explicit decomposition of the excess return on an asset into a risk premium and an ambiguity premium, and a further decomposition into a piece stemming from the diffusion part and a piece stemming from the jump part. We further compute our solutions in a few examples by numerically solving the corresponding BSDEs using regression techniques.
منابع مشابه
Robust Portfolio Choice and Indifference Valuation
We solve, theoretically and numerically, the problems of optimal portfolio choice and indifference valuation in a general continuous-time setting. The setting features (i) ambiguity and ambiguity averse preferences, (ii) discontinuities in the asset price processes, with a general and possibly infinite activity jump part next to a continuous diffusion part, and (iii) general and possibly non-co...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملRobust Portfolio Optimization with Multiple Experts
The success of quantitative approaches to portfolio choice crucially depends on the considered return model. Experts however do not agree on which return model is most appropriate. This controversy about the model specification introduces uncertainty in the optimal portfolio choice. We will not meddle in the discussion on which model specification is most appropriate. Instead we consider the ad...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کامل